George Akst, Center for Naval Analyses, 1994:

"Use of the Amphibious Warfare Model to Evaluate the Cost Effectiveness of Alternative Marine Corps Amphibious Assault Vehicles"

Arthur Aragon

George Brickhouse

Chad Henning

Amphibious Operations

Outline

The <u>AAV-7A1</u> & Replacement <u>Alternatives</u>

Evaluation

Performance & Cost Analysis Ruling out some Alternatives

Amphibious Warfare Model

Overview, Flow of Events, Attrition, Tactical Decision Rules, Smoothing, MOE

Results & Conclusions

Criticisms & Questions

The AAV-7A1 and Replacement Alternatives

Introduction

- The Marine Corps' current amphibious assault vehicle has reached the end of its service life.
 - Designed in 1970's
- The article presents the methodology and results of a cost and operational effectiveness analysis, (COEA), conducted by Center for Naval Analysis, (CNA)

History

- Several programs to replace AAV-7A1
 - Mid 1970's: LVA program
 - Develop 20+ knot AAV
 - Program canceled in 1979
 - Too expensive
 - Too risky
 - Mid 1980's: Upgraded AAV-7A1
 - Slow swimming vehicle
 - Improved armor/firepower
 - Canceled due to high cost
 - Again in 1980's: OTH strategy
 - Led to LCAC
 - LCAC fell short, idea of AAAV conceived
 - Marine Corps asks CNA for COEA

Plan

- Identify all alternatives
- Because of large number of alternatives
 - Conduct detailed evaluation of performance(cost/operational) on all the alternatives
 - Screen non-competitive alternatives
 - Model theater-level operations to determine relative contributionsto overall force effectiveness

Alternatives: Amphibious(fast/slow)

- AAV-7A1 PI
 - Upgrade of current
- AAV-7A2 (F)/(S)
 - Modernized version
- AAAV (F)/(S)
 - Super-duper version

The AAV-7A1

The AAV-7A1

Advanced AAV

Advanced AAV

More Alternatives: Non-swimmers

- LAV-25
- M113
- Bradley IFV
- FIFV
- APC(X)

LAV-25

M113 APC

M2 Bradley

FIFV & APC(X)

Alternatives: non-(land)vehicles

- Air option
 - CH46
- Surface option
 - LCAC with troop shelter

Air Delivery

LCAC Modifications

LCAC

Summary of Alternatives

Table 1.	Characteristics	of AAAV	alternatives.
----------	-----------------	---------	---------------

Alternative	Troops per vehicle	Vehicles per LCAC	
Fast swimmers	in whitelets (A) and the fire		
AAAV (F)	18	Not applicable	
AAV7A2 (F)	9	Not applicable	
Slow swimmers			
AAAV (S)	18	2	
AAV7A2(S)	18	2	
AAV7A1-PÍ	18	2	
Nonswimmers			
LAV-25	6	6	
M113	9	4	
Bradley	6	2	
FIFV	9	1	
APC(X)	18	2	
Nonvehicle		manual parts Aurice	
Air option ^a	12	Not applicable	
Surface option	216	Not applicable	

^a CH-60 helicopters.

Performance Analysis

- Criteria
 - Ship-to shore movement
 - Mobility ashore
 - Survivability
 - Lethality

Ship to Shore Movement

Combat power build-up rate

Mobility

- Cancels out air/LCAC option
- Unclear criteria for mobility
- Highest: APC(X), AAAV(S)
- Lowest: M113, LAV-25
- Every other alternative in between

the AAV-7 Replacing

Survivability

- Probability of being hit
- Large targets
 - AAV-7A1
 - AAV-7A2
- Probability of being damaged
 - Most likely: LAV-25
 - Least likely: FIFV
 - What about LCAC?

Lethality

- Accuracy
- Armor penetration
- Requirement: "to be able to defeat enemy APC's and IFV's in 2005 era"
 - Highest: FIFV, but overkill
 - Lowest: M113
 - Every other alternative in between

Screening

- Dominance:
 - "if A outperforms B and is the same cost or less, then we can comfortably eliminate B"
 - Results of Performance Analysis

Category	Alternatives retained	Alternatives screened out	
Slow swimming	AAAV (S)	is a situation of the collection of the	
秦世祖帝 周年中原	AAV7A2(S)		
	AAV7A1		
Nonamphibious	APC(X)	LAV-25	
	M113	Bradley	
		FIFV	
Fast swimming	AAAV (F)	AAV7A2 (F)	
Nonvehicle	Surface	Air	

Cost Analysis

- Life-cycle costs
- Discounted costs
 - "which we derived using a costing technique that considers time streams of expenditures"
 - AAAV(F) eliminates need for LCACs, this corresponds to a reduction in cost
- Based on equal-troop carrying capacity

Cost Analysis

Table 3. Unit procurement and life-cycle costs for AAA alternatives (in millions of FY 1991 dollars).

Alternative	Average unit cost	Number of vehicles	RDT&E	Life-cycle cost		
				Procurement	O&S	Total
AAAV (F)	4.0	951	889	3791	2080	6760
AAAV (S)	3.0	951	631	2895	1863	5389
APC(X)	2.4	951	504	2256	1741	4500
AAV7A2(S)	2.9	951	593	2729	1842	5164
AAV7A1	1.2	951	0	1181	1198	2379
M113	0.5	1769	0	952	1343	2295
Surface	_	_	0	3	0	3

Note: Numbers may not add because of rounding.

Cost Analysis Results

- AAAV(F) was most expensive
- "to consider the effects of differences in the streams of the costs involved, we also computed discounted costs. This did not change any of the relative rankings of the alternatives."

Effectiveness Methodology

- Objective: Compare total effectiveness of Marine forces equipped with the alternative systems
- Chose 2 different scenarios to evaluate the force effectiveness

Effectiveness Methodology

- Low Scenario employs a Marine Expeditionary Brigade (16,000 Marines) involved in a low- to mid-intensity conflict
- High Scenario employs a Marine Expeditionary Force (50,000 Marines) involved in a mid- to high-intensity conflict
- Evaluated these scenarios using the Amphibious Warfare Model – All components of force taken into consideration

Scenarios

- Take place in the year 2010
- High Scenario takes into account mining of coastline
- Also, High Scenario takes carrier battle group support into consideration

Model Overview

- Based on VECTOR-1 theater land ground and air campaign model with battalion level resolution
- AWM adds amphib aspects to the model to make a deterministic simulation of a conventional amphib operation
- Operates at a level of detail down to individual classes of weapons
- Has rather limited treatment of logistics and resupply

Model Overview

- Inputs large set that describe weapons effects, order of battle, and terrain
- Model processes input data then proceeds according to predetermined tactical decision rules
- Advance force ops, cruise missiles, ship-toshore movement, Assault landing, Air support

Model Overview

- Timeline First 12 hours divided into 1 hour segments. Steps are 6 hours thereafter
- Battlefield Division Divided up to 8 sectors
 and can be subdivided up to 30 sectors

Flow of Events

- Set of steps is divided into 2 major components: planning and execution cycles
- In each period each sector independently plans its portion of the battle
- Once sector planning is complete, it allocates aircraft across sectors based on a theater-wide perspective

Figure 2. Flow chart for the amphibious warfare model.

Attrition in the Model

- In the direct fire engagement, both sides use aimed fire Lanchester equations
- For artillery duels both sides use area fire
- Air-to-Ground attacks are modeled using a geometric attrition equation

Air-to-ground Geometric Attrition Equation

$$\Delta N = N*(1 - (1 - a)^n)$$

 ΔW = target losses

N = the number of targets

a = the expected fraction casualties per sortic

n = the number of sorties

Mine Warfare

- Models mines using the following equation:
- Number of mines is also refined density is changed depending on how many are detonated

Assault Vehicle/Landing Craft Attrition to Sea Mines

$$E(\Delta t) = N_m * (1 - M) * (1 - e^{-NW/C})$$

$$N_m = r * V * \Delta t * C$$

 N_{m} = the number of mines in the area

C = the width of the mine field

M = the fraction of mines cleared by countermeasures

N = the number of craft transiting through minefield

W = aggregate mine damage width

r = sea - mine density

V = transiting velocity of craft

More Mine Equations

Number of mines detonated during a specific time period

$$E_{x} = \frac{E(\Delta t)}{P_{k}}$$

 P_k = probability of kill per mine

Using equations above, mine density is modified by:

$$r' = r - \frac{E_x}{V * \Delta t * C}$$

Tactical Decision Rules

- 21 rules in the model
- Aircraft Allocation: First allocate aircraft by mission and then further allocate missionassigned aircraft to sectors
- Breakpoint Responses: Depends on force ratio and whether or not you are attacking or defending

Break Point Responses

Figure 3. Maximum acceptable casualties as a function of force ratio.

Discontinuities

- Since time steps are fixed length,
 breakpoints can be exceeded
- To account for this, AWM uses a step back method that replays the last time step in smaller increments so that thresholds are not largely exceeded

Measures of Effectiveness (MOE)

- Force Buildup Rate
- LER
- Force Movement
- Force Ratio
- Losses by cause

The Ending

- Results: MOE & Sensitivity Analysis
- Akst's Conclusions
- Our Criticism
- Questions

Results

Run AWM for 2 scenarios
 and 7 alternatives

- AAAV(S), AAV7A2(S) & APC(X) the same!
 - Must compare them outside the model
- How well do the alternatives perform?
 - MOE Results
- Is the model too sensitive to input variables?
 - Sensitivity Analysis

MOE Results: Force Buildup Rate

AAAV(F) gets there quickest.

Table 4.	Summary	of shir	o-to-shore	results.
----------	---------	---------	------------	----------

	Low scenario			High scenario		
	Fraction arriving		85%	Fraction arriving		85%
Alternative	Hour 1	Hour 2	hour	Hour 1	Hour 2	hour
AAAV (F)	0.64	0.77	3	0.82	0.90	2
AAAV (S), APC (X), and AAV7A2 (S)	0.38	0.52	4	0.43	0.60	6
Surface	0.52	0.74	3	0.72	0.82	3
M113	0.38	0.52	4	0.45	0.63	5
AAV7A1	0.38	0.52	4	0.41	0.58	7

MOE Results: Loss Exchange Ratio

- Theater totals: level for all Marine forces
- Surface totals: some sectors depend on helicopters or landing craft.
- AAAV(F) scores highest.

Table 5. Loss exchange ratios.

arlunar i titti etti i erani eari	Low so	cenario	High scenario	
Alternative	Theater totals	Surface totals	Theater totals	Surface totals
AAAV (F)	4.48	5.14	1.39	1.40
AAAV (S), APC (X), and AAV7A2 (S)	3.76	4.05	1.32	1.29
Surface	3.34	3.47	1.26	1.21
M113	2.98	3.01	1.24	1.14
AAV7A1	2.31	2.19	1.12	.99

MOE Results: Force Movement

- How far the force advances by end of battle
- AAAV(F) surpasses the others.

Table 6. Force movement (in kilometers).

mpg part force more many from	Low so	cenario	High scenario	
Alternative	Theater totals	Surface totals	Theater totals	Surface totals
AAAV (F)	101	111	24	36
AAAV (S), APC (X), and AAV7A2 (S)	88	90	22	33
Surface	77	71	15	19
M113	87	88	18	24
AAV7A1	83	82	22	32

Sensitivity Analysis

- Sea-mine Vulnerability & the AAAV(F)
 - Tested a range of possible magnetic signatures
 - Negligible effect: loss of 2 at most
- Enemy Arrival Times
 - Low: over 4 daysHigh: over 6 hours
 - Tested increased arrival rate (3 hours)
 - Hurt alternatives with slow ship-to-shore rate
- Equal Delivery (buildup rate)
 - # LCACs required is lowest for AAAV(F)
 - Could translate into reduced cost & improved mix

Table 7. Summary results for arrival time excursion (High Scenario).

	Loss exch	ange ratio	Force movement (km)	
Alternative	Theater totals	Surface totals	Theater totals	Surface totals
AAAV (F)	1.33	1.45	23	36
AAAV (S), APC (X), and AAV7A2 (S)	1.15	1.10	21	32
Surface	1.15	1.13	14	18
M113	1.04	0.92	16	23
AAV7A1	0.85	0.68	18	27

 Using the AAAV will save money because fewer LCACs are required.

Figure 4. LCACs required for four round-trip deliveries.

Summary of Results

Table 9. Summary of results for equal-delivery case (High Scenario, surface sector only).

Alternative	Loss exchange ratio	Force movement (km)	First hour with 85% arrived
AAAV (F) (base case)	1.40	36	2
AAAV (F) (equal-delivery case) AAAV (S), APC (X) and	1.32	34	3
AAV7A2(S)	1.29	33	6
Surface (base case)	1.21	19	3
Surface (equal-delivery case)	1.12	17	6
M113	1.14	24	5
AAV7A1	0.99	32	7

AAAV(F) wins! Surprise, surprise...

Akst's Conclusions

- Initial analysis ruled out 5
- Model and analysis produced Top 4: AAAV (F) & (S), AAV-7A2, & APC(X).
 - Rule out the AAV-7, beaten by AAAV(S).
- AAAV(F) was best performer
- But also most expensive. Willing to pay?
- If not, AAAV(S) is better for close in.
- Lesson: The model played a key role in real-life acquisition decision-making.

Criticisms

- Was the result ever in doubt?
 - Marines got the answer they wanted. Even hinted at sources of funding (less need for LCAC).
- Some alternatives were not viable options.
- Paper lacked specific measures used in cost and performance analysis.
- Tactical Decision Rules not explained
 - "designed with the assistance of Marine Corps officers"

Review Questions

- Answer: Force Buildup Rater, Loss Exchange Rate, Fore Movement, Force Ratio, Losses by Cause.
- How does Akst screen out non-competitive alternatives?
 - Answer: Using dominance in performance & cost analysis.
- T / F: The model used was divided into equal time steps.
 - Answer: False.

Questions?